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1) Introduction: assumptions in regression modeling
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Linearity

▶ Regression modeling is ubiquitous in clinical and epidemiological research to
connect one or more covariates (ind. variables) and a certain health outcome (dep.)

▶ Basic idea: identify a functional form between dependent and independent variables
▶ Commonly, these functional forms involve linear relationships

4 / 45



Common examples

▶ Linear regression [linear on the expected value of a continuous outcome]

E [Y ] = β0 + β1X1 + · · · + βpXp

▶ Logistic regression [linear on the logarithm of the odds (logit) of a binary outcome]

logit(p) = β0 + β1X1 + · · · + βpXp

▶ Cox regression [linear on the logarithm of hazard ratio for a time-to-event outcome]

log(HR) = β1X1 + · · · + βpXp
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▶ The use of linear functions implies that specific assumptions are made for
continuous predictors

▶ Example: continuous predictor (e.g. BMI) and continuous outcome Y
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Linearity assumption in practice
▶ Fit a linear regression: E [Y |BMI] = β0 + β1 · BMI. Result: β̂1 = 2.3

▶ Interpretation: difference in E [Y ] for each unit increase in BMI [blue line]

▶ The effect is the same when we compare BMI of 21 vs 20, 11 vs 10, 56 vs 55 etc.
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Log-linear models (e.g. logistic, Cox)

▶ Linearity assumptions have slightly different interpretations in logistic and Cox
model, which define linear assumptions on the logarithmic scale (log-linear models)

▶ Plotting figures on the log-scale is required to visualize linearity (and, later,
potential departures)
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Additivity

▶ Regression models make several additional assumptions (e.g. residuals normality,
homoscedasticity, proportionality of the hazards . . . )

▶ Additivity is another silent assumption with relevant implications on results’
interpretation and translation

▶ Additivity assumptions are made for any combination of covariates included in a
regression model
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Additivity in practice
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▶ AB pushes the car at 1 mph

▶ GF pushes the car at 2 mph

▶ How fast do they go when they push together?

▶ 3 mph: perfect additivity (assumption of a linear regression model)

▶ >3 mph: additive interaction

▶ <3 mph: negative interaction
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Additivity: implications

The assumption of additivity between two covariates implies:

▶ Their joint effect equals the sum of the two main effects: absence of interaction
▶ The effects of each covariate are constant over levels of the other covariate:

absence of effect modification

Note: in log-linear models, additivity assumption translates into a multiplicative
assumption on the OR and HR scale 1

1For more details see: VanderWeele TJ, Knol MJ. A tutorial on interaction. Epidemiologic methods.
2014 Dec 1;3(1):33-72.
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2) Relaxing linearity: intro to restricted cubic splines (RCS)
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2) Relaxing linearity: intro to restricted cubic splines (RCS)

A common approach to relax the linearity assumption is by creating a categorical version
of the continuous covariate, included in regression models using dummy variables

Example: create 4 groups using quartiles of the distribution

▶ Old (linear) model: E [Y ] = β0 + β1X1
▶ New (categorical) model: E [Y ] = β0 + β1X25th−50th + β2X50th−75th + β3X75th−100th

with X25th−50th, X50th−75th, and X75th−100th = (0,1)
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Table 1: Continuous and categorical version

x1 x1cat
2.7565865 3
3.1283981 4
0.6720901 2

-0.3604915 2
2.8176624 3

-4.4538679 1
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Categorization in practice
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We are replacing an assumption (linearity) with another assumption (step function)

▶ We now assume that the predicted response will be exactly the same for all
individuals in the same subgroups

▶ We are also assuming that the change in the outcome will occur at specified (a
priori and often subjectively) jumps

This assumption is often unrealistic.
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Issues with categorization have long been recognized

▶ Greenland S. Avoiding power loss associated with categorization and ordinal scores
in dose-response and trend analysis. Epidemiology 1995

▶ Greenland S. Problems in the Average-Risk Interpretation of Categorical
Dose-Response Analyses. Epidemiology 1995.

▶ Royston P, Altman DG, Sauerbrei W. Dichotomizing continuous predictors in
multiple regression: a bad idea. Stat Med 2006
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Splines
A more flexible solution: splines modeling
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Splines transformations involve 2 steps:

▶ Select how many knots and where to place them
▶ Conventionally at distribution percentiles. In general, 3 or 4 might suffice. Explore

more with skewed distributions or if there is specific interest at the tails
▶ Select how to model in between knots

This interactive website provides a great tool to understand more the different
assumptions and impact of knots numbers and locations: link
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How to model in between knots?

▶ Categorical analysis is actually a particular case of splines modeling (degree 0
splines) where we assume constant outcome levels between knots

▶ Alternatively, we could use linear function that changes slope at each knot (degree
1 splines, aka piecewise modeling)

▶ Degree 3 (cubic) splines: between knots, the curve is a cubic polynomial, a smooth
function of the form β0 + β1x + β2x + β3x
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Degree 0 (left, categorical approach), degree 1 (center, piecewise linear model, and degree 3
(right, cubic) splines for modeling the association between a continuous predictor and a binary
outcome (OR scale)
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Restricted Cubic Splines

▶ Restricted cubic splines add a constraint of linearity before the first and after the
last knot

▶ Practically, the continuous covariate is replaced by k − 1 new variables, where k is
the number of knots. A key feature of RCS is that the first of these new variables
coincide with the original covariate:
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Table 2: RCS transformation with 3 knots. The original covariate (first column) is replaced by
3-1 new variables, of which the first once coincides with the original covariate

Original predictor 1st splines transform. 2nd splines transform.
2.7565865 2.7565865 2.7126776
3.1283981 3.1283981 3.2072301
0.6720901 0.6720901 0.6792160

-0.3604915 -0.3604915 0.2281211
2.8176624 2.8176624 2.7919021

-4.4538679 -4.4538679 0.0000000
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Example of R implementation and output interpretation
rcs<-glm(y~rcs(x1,3),data=cov)

round(summary(rcs)$coefficients,3)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.929 0.222 -8.694 0
## rcs(x1, 3)x1 -5.541 0.109 -50.912 0
## rcs(x1, 3)x1' 10.240 0.126 81.303 0

▶ Because of the interpretation of the first term (corresponding to the original X ), we
can interpret the second term as the "non-linear term"
▶ A coefficient for this term close to 0 implies negligible departure from linearity
▶ The p value can be used (with caution) as a statistical test for linearity
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▶ The actual parameters, however, do not carry a clear interpretation.
▶ We need a graphical display to describe the non-linear association
▶ Results from the previous slide can be used to compute measures of interest and

CIs across the continuous predictor. See section 5 for software material to
reproduce these figures

▶ Example with logistic regression:
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OR of CHD as a function of SBP, modeled with RCS (4 knots)
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▶ With models such as logistic or Cox, we can either plot the OR (or HR) as a
function of X , or model predictions such as the predicted probability (or absolute
risk)
▶ When presenting ORs, it is important to select a meaningful comparison point

(e.g. the median.)
▶ Note that, CIs for predictions should not cross, while CIs for ORs should cross at the

reference value (OR=1)
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Probability of CHD as a function of SBP, modeled with RCS (4 knots)
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3) Relaxing additivity
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3) Relaxing additivity

This is more straightforward: inclusion of a product term (aka interaction term) relaxes
assumption of additivity and can be used to assess interaction or effect modification

E [Y ] = β0 + β1X1 + β2X2 + β3X1 · X2

▶ β3 can be used to test for interaction and/or effect modification

▶ Interpretation of the results should take into account the scale (i.e. additive
interaction vs multiplicative interaction)
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A note on overfitting

Do we always need complex (e.g. non-linear and non-additive) models?

▶ Key question: do we want our statistical model to describe as best as possible our
data, or to be generalizable (i.e. to predict better)?

▶ Overfitting: the model perfectly fits our data but has limited generalizability

▶ Indexes like AIC/BIC are a better way to account for model complexity when
comparing models. They might be preferred to conventional Wald tests in this
context

▶ Pragmatically speaking, consider results’ interpretation
▶ For example, if the non-linearity occurs at a distribution tail with limited individuals,

we are likely overfitting -> Always recommended to include a histogram or a rug plot
under the splines plots
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4) RCS framework to integrate non-linear and non-additive
effects
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4) RCS framework to integrate non-linear and non-additive effects

▶ Suppose we are conducting a study on a binary exposure X (e.g. TRT) and we
want to study how the effects of X on Y vary over levels of a continuous variable Z
(e.g. age)

▶ We include an interaction (product) term between X and Z

log(HR) = β1x + β2z + β3z · x

▶ The linearity assumption made for Z is extended to the interaction term. With the
product term we are relaxing the assumption that the effect of X is constant over
levels of Z, but we are now assuming that it changes (log-)linearly
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Assumption of a model with interaction term involving a continuous predictor. The effect of X
on Y changes (log-)linearly over levels of Z
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RCS in an interaction model

▶ Let’s address the problem with RCS. We transform Z using the RCS transformation
from slide 22. With 3 knots:

z -> sp1(z) + sp2(z), where

sp1(z) = z , and sp2(z) = [
(z−t1)3

+−(z−t2)3
+· t3−t1

t3−t2
+(z−t3)3

+· t2−t1
t3−t2

(t3−t1)2 ]

and we fit the model

log(HR) = β1x + β2z + β3sp2(z) + β4x · z + β5x · sp2(z)

▶ terms for non-linear Z
▶ terms for non-linear X · Z interaction
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▶ From this model, we can predict the OR for X over levels of Z 2

▶ And derive the SE by using either the delta method or bootstrap

▶ R package interactionRCS to derive graphical displays of non-linear interaction
from the models
▶ Incorporates linear, logistic, and Cox
▶ Online vignette (link) also includes formulas for more than 3 knots

2details in 2024 AJE paper
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Example of figure from interactionRCS
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Example from real data
From Marston et al, JAMA cardiology 2022

Figure 1A from
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https://jamanetwork.com/journals/jamacardiology/fullarticle/2800101


Model predictions

▶ As we can predict event probabilities and absolute risks from a splines model, so we
can predict non-linear interactions on these additional scales

▶ These will provide indication of interaction on the (additive) absolute
risk/probability scale, to complement those on the (multiplicative) OR/HR scale.
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Example: smoking effect of the risk of MACE over levels of hemoglobin (2024 AJE
paper)

Figure 1 from Bellavia et al., AJE 2024
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1) Point estimates derived through individual predictions from the splines-interaction
model (consider a grid based on covariates values to improve computational speed)

2) Estimate confidence intervals for predictions

▶ Bootstrap
▶ Based on SE estimated from the Cox model

See R code (link later in the slides) for implementation of these steps
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5) Software material
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5) Software material

We 3 have developed code and tutorials for all steps discussed
(https://github.com/andreabellavia/RCSplines )

The page includes:
▶ 1) Code and tutorials in SAS, Stata, and R, for splines modeling and graphical

presentations for linear, logistic, and Cox (including model predictions)

▶ 2) R material for non-linear interactions
▶ R package interactionRCS documentation
▶ Code and tutorial for absolute risk predictions

3Credits to: Andrea Discacciati, Giorgio Melloni, Michael Palazzolo, Jeong-Gun Park, Hong Xiong
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https://github.com/andreabellavia/RCSplines


Thanks for your attention!

Contact:

abellavia@bwh.harvard.edu

andreabellavia.github.io

timi.org/biostatistics/
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