Background	Decomposition	Example	Discussion
000000	0000000	000000	000

Decomposition of the Total Effect in the Presence of Multiple Mediators and Interactions

Andrea Bellavia, Linda Valeri Harvard T.H. Chan School of Public Health, Harvard Medical School

> ENAR Spring meeting March 14, 2017

Bellavia A, Valeri L - Harvard University

Multiple mediators and interactions - March 14, 2017

Background	Decomposition	Example	Discussion
00000			

Motivating example - psychiatric epidemiology

 There is still debate on whether first and second generation antipsychotics differ in efficacy and in effectiveness (Lieberman et al., 2005).

A (1) > A (1) > A

Background	Decomposition	Example	Discussion
●00000			

Motivating example - psychiatric epidemiology

- There is still debate on whether first and second generation antipsychotics differ in efficacy and in effectiveness (Lieberman et al., 2005).
- One important outcome in schizophrenia patients is social functioning (SF). New treatments have only been associated with moderate and non-significant improvement in SF.

$$TRT \longrightarrow SF$$

Bellavia A, Valeri L - Harvard University

Multiple mediators and interactions - March 14, 2017

3

Background 0●0000	Decomposition 0000000	Example 000000	Discussion 000

 New-generation treatments are designed to target PANSS positive symptoms, whose improvement is associated with improved SF.

· 《 曰 》 《 聞 》 《 臣 》 《 臣 》 《 臣 》 《 (P)

Bellavia A, Valeri L - Harvard University

Multiple mediators and interactions - March 14, 2017

Background	Decomposition		Discussion
00000	0000000	000000	000

 However, new-generations treatments are also associated with the higher side-effects ratio, weight gain (WG) in particular (Zheng et al., 2009).

Bellavia A, Valeri L - Harvard University

Multiple mediators and interactions - March 14, 2017

Background	Decomposition	Discussion
00000		

 However, new-generations treatments are also associated with the higher side-effects ratio, weight gain (WG) in particular (Zheng et al., 2009).

Finally, interactions at all levels are expected.

Background	Decomposition	Example	Discussion
000●00	0000000	000000	000

 Our aim was to investigate the interplay of symptoms and side effects in explaining treatments efficacy and effectiveness.

э

Background	Decomposition	Example	Discussion
000●00	0000000	000000	000

- Our aim was to investigate the interplay of symptoms and side effects in explaining treatments efficacy and effectiveness.
- Formally, this means identifying mediating and/or interactive mechanisms of action of the treatment through hypothesized mediators.

э

Background	Decomposition	Example	Discussion
0000●0	0000000	000000	000

Available methods: Multiple Mediators

- Methods for multiple mediators are available
- Parametric and non-parametric estimation under various settings (Vanderweele and Vansteelandt, 2013).
- Counterfactual definition of path-specifc effects and possible decompositions of the total effect (Daniel et al., 2015)

3 ×

Background	Decomposition	Example	Discussion
000000			

Available methods: Multiple Mediators

- Methods for multiple mediators are available
- Parametric and non-parametric estimation under various settings (Vanderweele and Vansteelandt, 2013).
- Counterfactual definition of path-specifc effects and possible decompositions of the total effect (Daniel et al., 2015)
- Exposure-mediator and mediator-mediator interactions are likely to be present.
- No study has investigated counterfactual definition of high-dimension interaction nor included those in multiple mediators setting

Background	Decomposition	Example	Discussion
00000			

Available methods: 4-way decomposition

 In the context of one mediator, a decomposition of the TE into mediation and interaction components is available (Vanderweele, 2014)

Component	Interpretation
CDE	Treatment effect neither due to mediation nor interaction
INTref	Treatment effect only due to interaction
INTmed	Treatment effect due to both mediation and interaction
PNIE	Treatment effect only due to mediation

Bellavia A, Valeri L - Harvard University

Multiple mediators and interactions - March 14, 2017

Background	Decomposition	Example	Discussion
000000			

Available methods: 4-way decomposition

 In the context of one mediator, a decomposition of the TE into mediation and interaction components is available (Vanderweele, 2014)

Component	Interpretation
CDE	Treatment effect neither due to mediation nor interaction
INTref	Treatment effect only due to interaction
INTmed	Treatment effect due to both mediation and interaction
PNIE	Treatment effect only due to mediation

 We want to derive a decomposition of TE that unifies mediation and interaction when multiple mediators are present.

Background	Decomposition	Example	Discussion
	000000		

Multiple mediators - Effect definitions

(Without loss of generality we will assume two mediators M_1 and M_2 , and assume binary A, M_1 , and M_2)

Total effect

$$TE = Y_1 - Y_0 = Y_{1M_1(1)M_2(1)} - Y_{0M_1(0)M_2(0)}$$

Bellavia A, Valeri L - Harvard University

3 X 3

(日) (同) (三) (

Background	Decomposition	Example	Discussion
	000000		

Multiple mediators - Effect definitions

(Without loss of generality we will assume two mediators M_1 and M_2 , and assume binary A, M_1 , and M_2)

Total effect

$$TE = Y_1 - Y_0 = Y_{1M_1(1)M_2(1)} - Y_{0M_1(0)M_2(0)}$$

Controlled direct effect (CDE): the effect of A if both mediators were fixed to the referent value.

 $CDE = Y_{100} - Y_{000}$

Bellavia A, Valeri L - Harvard University

Multiple mediators and interactions - March 14, 2017

3

イロト イポト イヨト イヨト

Background	Decomposition	Example	Discussion
	000000		

Multiple mediators - Effect definitions

(Without loss of generality we will assume two mediators M_1 and M_2 , and assume binary A, M_1 , and M_2)

Total effect

$$TE = Y_1 - Y_0 = Y_{1M_1(1)M_2(1)} - Y_{0M_1(0)M_2(0)}$$

Controlled direct effect (CDE): the effect of A if both mediators were fixed to the referent value.

$$CDE = Y_{100} - Y_{000}$$

Pure natural direct effect (PNDE): the effect of A if both the mediators were set on the value they would naturally take at the referent value of the exposure (i.e. 0).

$$PNDE = Y_{1M_1(0)M_2(0)} - Y_{0M_1(0)M_2(0)}$$

Bellavia A, Valeri L - Harvard University

Multiple mediators and interactions - March 14, 2017

Background	Decomposition	Example	Discussion
000000	○●○○○○○	000000	000

Bellavia A, Valeri L - Harvard University

Multiple mediators and interactions - March 14, 2017

э

Background	Decomposition	Example	Discussion
000000	0●00000	000000	000

• The effect of M_1 in the absence of both A and M_2 :

 $PNIE_{M_1} = Y_{0M_1(1)M_2(0)} - Y_{0M_1(0)M_2(0)}$

Bellavia A, Valeri L - Harvard University

Multiple mediators and interactions - March 14, 2017

э

イロト イポト イヨト イヨト

Background	Decomposition	Example	Discussion
000000	○●○○○○○	000000	000

• The effect of M_1 in the absence of both A and M_2 :

 $PNIE_{M_1} = Y_{0M_1(1)M_2(0)} - Y_{0M_1(0)M_2(0)}$

• The effect of M_2 in the absence of both A and M_1 :

$$PNIE_{M_2} = Y_{0M_1(0)M_2(1)} - Y_{0M_1(0)M_2(0)}$$

3

イロト イポト イヨト イヨト

Background	Decomposition	Example	Discussion
000000	0●00000	000000	000

• The effect of M_1 in the absence of both A and M_2 :

 $PNIE_{M_1} = Y_{0M_1(1)M_2(0)} - Y_{0M_1(0)M_2(0)}$

• The effect of M_2 in the absence of both A and M_1 :

 $PNIE_{M_2} = Y_{0M_1(0)M_2(1)} - Y_{0M_1(0)M_2(0)}$

• The combined effect of M_2 and M_1 in the absence of A:

 $PNIE_{M_1M_2} = Y_{0M_1(1)M_2(1)} - Y_{0M_1(0)M_2(0)}$

See Daniel et al, 2015 for other possible effect definitions

Multiple mediators and interactions - March 14, 2017

3

Background 000000	Decomposition	Example 000000	Discussion 000

3-way interaction

We can define 3-way interaction (on the additive scale) in three ways:

• The change in $A \cdot M_1$ when M_2 goes from absent to present

 $p_{111} - p_{101} - p_{011} + p_{001} > p_{110} - p_{100} - p_{010} + p_{000}$

• The change in $A \cdot M_2$ when M_1 goes from absent to present

 $p_{111} - p_{110} - p_{011} + p_{010} > p_{101} - p_{100} - p_{001} + p_{000}$

• The change in $M_1 \cdot M_2$ when A goes from absent to present

 $p_{111} - p_{110} - p_{101} + p_{100} > p_{011} - p_{010} - p_{001} + p_{000}$

Multiple mediators and interactions - March 14, 2017

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 ののの

Background	Decomposition	Example	Discussion
	000000		

3-way interaction

We can define 3-way interaction (on the additive scale) in three ways:

• The change in $A \cdot M_1$ when M_2 goes from absent to present

 $p_{111} - p_{101} - p_{011} + p_{001} > p_{110} - p_{100} - p_{010} + p_{000}$

• The change in $A \cdot M_2$ when M_1 goes from absent to present

 $p_{111} - p_{110} - p_{011} + p_{010} > p_{101} - p_{100} - p_{001} + p_{000}$

• The change in $M_1 \cdot M_2$ when A goes from absent to present

 $p_{111} - p_{110} - p_{101} + p_{100} > p_{011} - p_{010} - p_{001} + p_{000}$

From all these definitions we identify the same measure of 3-way interaction

 $p_{111} - p_{110} - p_{101} - p_{011} + p_{100} + p_{010} + p_{001} - p_{000}$

Bellavia A, Valeri L - Harvard University

Multiple mediators and interactions - March 14, 2017

Decomposition of the total effect

$$\begin{split} \mathsf{TE} =& \mathsf{CDE} + \mathsf{PNIE}_{M_1} + \mathsf{PNIE}_{M_2} + \mathsf{PNIE}_{M_1*M_2} + \\ & \mathsf{INTref}_{A*M_1} + \mathsf{INTref}_{A*M_2} + \mathsf{INTref}_{A*M_1*M_2} + \\ & \mathsf{INTmed}_{A*M_1} + \mathsf{INTmed}_{A*M_2} + \mathsf{INTmed}_{A*M_1*M_2} \end{split}$$

- This generalizes the 4-way decomposition introduced in the context of a single mediator.
- PNIE, INTref, and INTmed, can be additionally decomposed into three components each, capturing effects that operate through specific pathways and interactions.

э

イロト イポト イヨト イヨト

Background	Decomposition	Example	Discussion
000000		000000	000

Component	Definition
CDE	$[Y_{100} - Y_{000}]$
$PNIE_{M_1}$	$[Y_{010} - Y_{000}][M_1(1) - M_1(0)]$
$PNIE_{M_2}$	$[Y_{001} - Y_{000}][M_2(1) - M_2(0)]$
$PNIE_{M_1*M_2}$	$[Y_{011} - Y_{010} - Y_{001} + Y_{000}][M_1(1)M_2(1) - M_1(0)M_2(0)]$
$INTref_{A*M_1}$	$[Y_{110} - Y_{100} - Y_{010} + Y_{000}]M_1(0)$
$INTref_{A*M_2}$	$[Y_{101} - Y_{100} - Y_{001} + Y_{000}]M_2(0)$
$INTref_{A*M_1*M_2}$	$[Y_{111} - Y_{110} - Y_{101} - Y_{011} +$
	$Y_{100} + Y_{010} + Y_{001} - Y_{000}]M_1(0)M_2(0)$
$INTmed_{A*M_1}$	$[Y_{101} - Y_{100} - Y_{001} + Y_{000}][M_2(1) - M_2(0)]$
$INTmed_{A*M_2}$	$[Y_{110} - Y_{100} - Y_{010} + Y_{000}][M_1(1) - M_1(0)]$
$INTmed_{A*M_1*M_2}$	$[Y_{111} - Y_{110} - Y_{101} - Y_{011} +$
	$Y_{001} + Y_{010} + Y_{100} - Y_{000}][M_1(1)M_2(1) - M_1(0)M_2(0)]$

Bellavia A, Valeri L - Harvard University

Multiple mediators and interactions - March 14, 2017

2

・ロト ・回ト ・ヨト ・ヨト

Background	Decomposition	Example	Discussion
000000	○○○○○●○	000000	000

Properties and additional results

- The decomposition can be extended to the case of continuous mediators and exposures
- ► All components can be identified (at the population level, and given the four classical assumptions: no unmeasured A-Y, M-Y, A-M confounding, and no effect of A that confounds the M-Y relationship. Assumptions involving M must hold for all mediators)
- Non-empirical analogues have been derived

・ 同 ト ・ ヨ ト ・ ヨ ト

Background	Decomposition	Example	Discussion
000000	000000●	000000	000

- Simulation studies with both continuous and binary outcomes have been used to empirically test the decomposition
- An extension to incorporate more than 2 independent mediators has also been developed

э

3 ×

Background	Decomposition	Example	Discussion
000000	0000000	●00000	000

Illustrative example

- ► 497 schizophrenia patients from the CATIE trial assigned to either Olanzapine (n=336) or a first generation drug used as comparison (Perphenazine, n=161).
- Continuous outcome (total score of PANSS negative symptoms, ranged on a scale from 7 to 49. Used as a proxy for SF) assessed after 9 months.
- Two continuous continuous mediators, weight gain (in lbs) and PANSS positive score (from 7 to 49), assessed after 6 months from the beginning of the study.

3

・ 同 ト ・ ヨ ト ・ ヨ ト

Background 000000	Decomposition 0000000	Example ○●○○○○	Discussion 000

Illustrative example

- Analyses further adjusted for gender, age, race/ethnicity, systolic and diastolic blood pressure, prior treatment, hospitalization, and waist-hip ratio, measured at baseline.
- Parametric approach (Vanderweele and Vansteelandt, 2013), with linear regression models for both outcome and mediators.
 4-way decomposition implemented in R.
- Total effect indicated no treatment effect on the negative PANSS score at 9 months (β=0.01, 95% CI: -1.23, 1.23)
- However, treatment was associated with improved PANSS positive symptoms, and with higher weight gain

・ 同 ト ・ ヨ ト ・ ヨ ト

Background	Decomposition	Example	Discussion 000
			000

Decomposition result

	Estimate	95% CI
CDE	-2.83	-6.65, 0.92
PNIE _{PANSS+}	0.18	-0.04, 0.53
PNIE _{WG}	0.79	0.10, 1.42
PNIE _{PANSS+,WG}	-	-
INTref _{PANNS+}	2.78	-0.88, 6.28
INTref _{WG}	-0.22	-0.75, 0.12
INTref _{PANSS+,WG}	-	-
INTmed _{PANSS+}	0.14	-0.07, 0.47
INTmed _{WG}	-0.83	-1.62, -0.02
INTmed _{PANSS+,WG}	-	-
NDE	-0.27	-1.60, 1.05
NIE	0.28	-0.40, 0.91
TE	0.01	-1.23, 1.23
		A D > A D > A E

Bellavia A, Valeri L - Harvard University

Multiple mediators and interactions - March 14, 2017

Background	Decomposition	Example	Discussion
000000	0000000	000●00	000

Decomposition result

	Estimate	95% CI
CDE	-2.83	-6.65, 0.92
PNIE _{PANSS+}	0.18	-0.04, 0.53
PNIE _{WG}	0.79	0.10, 1.42
PNIE _{PANSS+,WG}	-	-
INTref _{PANNS+}	2.78	-0.88, 6.28
INTref _{WG}	-0.22	-0.75, 0.12
INTref _{PANSS+,WG}	-	-
INTmed _{PANSS+}	0.14	-0.07, 0.47
INTmed _{WG}	-0.83	-1.62, -0.02
INTmed _{PANSS+,WG}	-	-
NDE	-0.27	-1.60, 1.05
NIE	0.28	-0.40, 0.91
TE	0.01	-1.23, 1.23
-		· · · · · · · · · · · · · · · · · · ·

Bellavia A, Valeri L - Harvard University

Multiple mediators and interactions - March 14, 2017

Background	Decomposition	Example	Discussion
000000	0000000	0000●0	000

Decomposition result

	Estimate	95% CI
CDE	-2.83	-6.65, 0.92
PNIE _{PANSS+}	0.18	-0.04, 0.53
PNIE _{WG}	0.79	0.10, 1.42
PNIE _{PANSS+,WG}	-	-
INTref _{PANNS+}	2.78	-0.88, 6.28
INTref _{WG}	-0.22	-0.75, 0.12
INTref _{PANSS+,WG}	-	-
INTmed _{PANSS+}	0.14	-0.07, 0.47
INTmed _{WG}	-0.83	-1.62, -0.02
INTmed _{PANSS+,WG}	-	-
NDE	-0.27	-1.60, 1.05
NIE	0.28	-0.40, 0.91
TE	0.01	-1.23, 1.23

Bellavia A, Valeri L - Harvard University

Multiple mediators and interactions - March 14, 2017

Background	Decomposition	Example	Discussion
000000	0000000	00000●	000

- Treatment effect has opposite sign in direct paths and indirect paths through the two mediators (PANSS+ and WG)
- CDE informs that had the patient experienced no weight gain and no positive symptoms, the treatment would lead to improvement in negative symptoms
- Increase in positive symptoms hampers improvement in negative symptoms (INTref_{PANSS+}, PNIE_{PANSS+}, INTmed_{PANSS+} have all same sign)
- Weight gain displays a complex relationship with negative symptoms (different signs between mediated effect and interactions)

3

イロト 不得 トイヨト イヨト

Background	Decomposition	Example	Discussion
000000	000000	000000	●00

Discussion

- We derived a single decomposition of the total effect that unifies mediation and interaction in the context of multiple mediators
- With independent (non-sequential) mediators, the decomposition can easily be extended to a high number of mediators
- Components can be identified with the same classical assumptions of the classical mediation literature

∃→ < ∃→</p>

Background 000000	Decomposition 0000000	Example 000000	Discussion ○●○

Discussion (2)

 We are currently investigating the (possibly more likely) setting of sequential mediators. Components definition is challenging and identifiability is not possible for most of them (including interaction terms)

э

Background	Decomposition	Example	Discussion
000000	0000000	000000	

Discussion (2)

- We are currently investigating the (possibly more likely) setting of sequential mediators. Components definition is challenging and identifiability is not possible for most of them (including interaction terms)
- As the number of mediators increase, estimation becomes complicated. Parametric models may not be the best option

Background 000000	Decomposition 0000000	Example 000000	Discussion ○○●

References

- Daniel RM, et al. Causal mediation analysis with multiple mediators. Biometrics. 2015 Mar 1;71(1):1-4.
- Lieberman JA, et al. Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) Investigators Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med. 2005 Sep 22;353(12):1209-23.
- VanderWeele TJ. A unification of mediation and interaction: a four-way decomposition. Epidemiology. 2014 Sep;25(5):749.
- VanderWeele TJ., & Vansteelandt, S. (2013). Mediation analysis with multiple mediators. Epidemiologic methods, 2(1), 95-115.
- Zheng L, et al. Metabolic changes associated with second-generation antipsychotic use in Alzheimers disease patients: the CATIE-AD study. American Journal of Psychiatry. 2009 May;166(5):583-90.

イロト 不得 とくき とくき とうき