Decomposition of the Total Effect in the Presence of Multiple Mediators and Interactions

Andrea Bellavia, Linda Valeri
Harvard T.H. Chan School of Public Health, Harvard Medical School

ENAR Spring meeting
March 14, 2017

Motivating example - psychiatric epidemiology

- There is still debate on whether first and second generation antipsychotics differ in efficacy and in effectiveness (Lieberman et al., 2005).

Motivating example - psychiatric epidemiology

- There is still debate on whether first and second generation antipsychotics differ in efficacy and in effectiveness (Lieberman et al., 2005).
- One important outcome in schizophrenia patients is social functioning (SF). New treatments have only been associated with moderate and non-significant improvement in SF.

$$
T R T \longrightarrow S F
$$

- New-generation treatments are designed to target PANSS positive symptoms, whose improvement is associated with improved SF.

- However, new-generations treatments are also associated with the higher side-effects ratio, weight gain (WG) in particular (Zheng et al., 2009).

- However, new-generations treatments are also associated with the higher side-effects ratio, weight gain (WG) in particular (Zheng et al., 2009).

- Finally, interactions at all levels are expected.
- Our aim was to investigate the interplay of symptoms and side effects in explaining treatments efficacy and effectiveness.
- Our aim was to investigate the interplay of symptoms and side effects in explaining treatments efficacy and effectiveness.
- Formally, this means identifying mediating and/or interactive mechanisms of action of the treatment through hypothesized mediators.

Available methods: Multiple Mediators

- Methods for multiple mediators are available
- Parametric and non-parametric estimation under various settings (Vanderweele and Vansteelandt, 2013).
- Counterfactual definition of path-specifc effects and possible decompositions of the total effect (Daniel et al., 2015)

Available methods: Multiple Mediators

- Methods for multiple mediators are available
- Parametric and non-parametric estimation under various settings (Vanderweele and Vansteelandt, 2013).
- Counterfactual definition of path-specifc effects and possible decompositions of the total effect (Daniel et al., 2015)
- Exposure-mediator and mediator-mediator interactions are likely to be present.
- No study has investigated counterfactual definition of high-dimension interaction nor included those in multiple mediators setting

Available methods: 4-way decomposition

- In the context of one mediator, a decomposition of the TE into mediation and interaction components is available (Vanderweele, 2014)

Component	Interpretation
CDE	Treatment effect neither due to mediation nor interaction
INTref	Treatment effect only due to interaction
INTmed	Treatment effect due to both mediation and interaction
PNIE	Treatment effect only due to mediation

Available methods: 4-way decomposition

- In the context of one mediator, a decomposition of the TE into mediation and interaction components is available (Vanderweele, 2014)

Component	Interpretation
CDE	Treatment effect neither due to mediation nor interaction
INTref	Treatment effect only due to interaction
INTmed	Treatment effect due to both mediation and interaction
PNIE	Treatment effect only due to mediation

- We want to derive a decomposition of TE that unifies mediation and interaction when multiple mediators are present.

Multiple mediators - Effect definitions

(Without loss of generality we will assume two mediators M_{1} and M_{2}, and assume binary A, M_{1}, and M_{2})

- Total effect

$$
T E=Y_{1}-Y_{0}=Y_{1 M_{1}(1) M_{2}(1)}-Y_{0 M_{1}(0) M_{2}(0)}
$$

Multiple mediators - Effect definitions

(Without loss of generality we will assume two mediators M_{1} and M_{2}, and assume binary A, M_{1}, and M_{2})

- Total effect

$$
T E=Y_{1}-Y_{0}=Y_{1 M_{1}(1) M_{2}(1)}-Y_{0 M_{1}(0) M_{2}(0)}
$$

- Controlled direct effect (CDE): the effect of A if both mediators were fixed to the referent value.

$$
C D E=Y_{100}-Y_{000}
$$

Multiple mediators - Effect definitions

(Without loss of generality we will assume two mediators M_{1} and M_{2}, and assume binary A, M_{1}, and M_{2})

- Total effect

$$
T E=Y_{1}-Y_{0}=Y_{1 M_{1}(1) M_{2}(1)}-Y_{0 M_{1}(0) M_{2}(0)}
$$

- Controlled direct effect (CDE): the effect of A if both mediators were fixed to the referent value.

$$
C D E=Y_{100}-Y_{000}
$$

- Pure natural direct effect (PNDE): the effect of A if both the mediators were set on the value they would naturally take at the referent value of the exposure (i.e. 0).

$$
P N D E=Y_{1 M_{1}(0) M_{2}(0)}-Y_{0 M_{1}(0) M_{2}(0)}
$$

Pure natural indirect effect (PNIE): the effect of the mediator in the absence of exposure. With two mediators it can be further divided into three main components.

Pure natural indirect effect (PNIE): the effect of the mediator in the absence of exposure. With two mediators it can be further divided into three main components.

- The effect of M_{1} in the absence of both A and M_{2} :

$$
\text { PNIE }_{M_{1}}=Y_{0 M_{1}(1) M_{2}(0)}-Y_{0 M_{1}(0) M_{2}(0)}
$$

Pure natural indirect effect (PNIE): the effect of the mediator in the absence of exposure. With two mediators it can be further divided into three main components.

- The effect of M_{1} in the absence of both A and M_{2} :

$$
\text { PNIE }_{M_{1}}=Y_{0 M_{1}(1) M_{2}(0)}-Y_{0 M_{1}(0) M_{2}(0)}
$$

- The effect of M_{2} in the absence of both A and M_{1} :

$$
\text { PNIE }_{M_{2}}=Y_{0 M_{1}(0) M_{2}(1)}-Y_{0 M_{1}(0) M_{2}(0)}
$$

Pure natural indirect effect (PNIE): the effect of the mediator in the absence of exposure. With two mediators it can be further divided into three main components.

- The effect of M_{1} in the absence of both A and M_{2} :

$$
\text { PNIE }_{M_{1}}=Y_{0 M_{1}(1) M_{2}(0)}-Y_{0 M_{1}(0) M_{2}(0)}
$$

- The effect of M_{2} in the absence of both A and M_{1} :

$$
\text { PNIE }_{M_{2}}=Y_{0 M_{1}(0) M_{2}(1)}-Y_{0 M_{1}(0) M_{2}(0)}
$$

- The combined effect of M_{2} and M_{1} in the absence of A :

$$
\text { PNIE }_{M_{1} M_{2}}=Y_{0 M_{1}(1) M_{2}(1)}-Y_{0 M_{1}(0) M_{2}(0)}
$$

See Daniel et al, 2015 for other possible effect definitions

3-way interaction

We can define 3-way interaction (on the additive scale) in three ways:

- The change in $A \cdot M_{1}$ when M_{2} goes from absent to present

$$
p_{111}-p_{101}-p_{011}+p_{001}>p_{110}-p_{100}-p_{010}+p_{000}
$$

- The change in $A \cdot M_{2}$ when M_{1} goes from absent to present

$$
p_{111}-p_{110}-p_{011}+p_{010}>p_{101}-p_{100}-p_{001}+p_{000}
$$

- The change in $M_{1} \cdot M_{2}$ when A goes from absent to present

$$
p_{111}-p_{110}-p_{101}+p_{100}>p_{011}-p_{010}-p_{001}+p_{000}
$$

3-way interaction

We can define 3-way interaction (on the additive scale) in three ways:

- The change in $A \cdot M_{1}$ when M_{2} goes from absent to present

$$
p_{111}-p_{101}-p_{011}+p_{001}>p_{110}-p_{100}-p_{010}+p_{000}
$$

- The change in $A \cdot M_{2}$ when M_{1} goes from absent to present

$$
p_{111}-p_{110}-p_{011}+p_{010}>p_{101}-p_{100}-p_{001}+p_{000}
$$

- The change in $M_{1} \cdot M_{2}$ when A goes from absent to present

$$
p_{111}-p_{110}-p_{101}+p_{100}>p_{011}-p_{010}-p_{001}+p_{000}
$$

From all these definitions we identify the same measure of 3-way interaction

$$
p_{111}-p_{110}-p_{101}-p_{011}+p_{100}+p_{010}+p_{001}-p_{000}
$$

Decomposition of the total effect

$$
\begin{aligned}
\mathrm{TE}= & \text { CDE }+ \text { PNIE }_{M_{1}}+\text { PNIE }_{M_{2}}+\text { PNIE }_{M_{1} * M_{2}} \\
& \text { INTref }_{A * M_{1}}+\text { INTref }_{A * M_{2}}+\text { INTref }_{A * M_{1} * M_{2}}+ \\
& \text { INTmed }_{A_{*} M_{1}}+\text { INTmed }_{A * M_{2}}+\text { INTmed }_{A * M_{1} * M_{2}}
\end{aligned}
$$

- This generalizes the 4-way decomposition introduced in the context of a single mediator.
- PNIE, INTref, and INTmed, can be additionally decomposed into three components each, capturing effects that operate through specific pathways and interactions.

Component Definition
CDE $\quad\left[Y_{100}-Y_{000}\right]$
$\mathrm{PNIE}_{M_{1}}$
$\left[Y_{010}-Y_{000}\right]\left[M_{1}(1)-M_{1}(0)\right]$
PNIE $_{M_{2}}$
[$\left.Y_{001}-Y_{000}\right]\left[M_{2}(1)-M_{2}(0)\right]$
PNIE $_{M_{1} * M_{2}}$
$\mathrm{INTref}_{A * M_{1}}$
$\mathrm{INTref}_{A * M_{2}}$
$\left[Y_{011}-Y_{010}-Y_{001}+Y_{000}\right]\left[M_{1}(1) M_{2}(1)-M_{1}(0) M_{2}(0)\right]$
$\left[Y_{110}-Y_{100}-Y_{010}+Y_{000}\right] M_{1}(0)$
$\left[Y_{101}-Y_{100}-Y_{001}+Y_{000}\right] M_{2}(0)$
INTref $_{A * M_{1} * M_{2}}$
[$Y_{111}-Y_{110}-Y_{101}-Y_{011}+$
$\left.Y_{100}+Y_{010}+Y_{001}-Y_{000}\right] M_{1}(0) M_{2}(0)$
INTmed $_{A * M_{1}} \quad\left[Y_{101}-Y_{100}-Y_{001}+Y_{000}\right]\left[M_{2}(1)-M_{2}(0)\right]$
INTmed ${ }_{A * M_{2}}$
$\left[Y_{110}-Y_{100}-Y_{010}+Y_{000}\right]\left[M_{1}(1)-M_{1}(0)\right]$
INTmed ${ }_{A * M_{1} * M_{2}}$
$\left[Y_{111}-Y_{110}-Y_{101}-Y_{011}+\right.$
$\left.Y_{001}+Y_{010}+Y_{100}-Y_{000}\right]\left[M_{1}(1) M_{2}(1)-M_{1}(0) M_{2}(0)\right]$

Properties and additional results

- The decomposition can be extended to the case of continuous mediators and exposures
- All components can be identified (at the population level, and given the four classical assumptions: no unmeasured $A-Y$, $M-Y, A-M$ confounding, and no effect of A that confounds the $M-Y$ relationship. Assumptions involving M must hold for all mediators)
- Non-empirical analogues have been derived
- Simulation studies with both continuous and binary outcomes have been used to empirically test the decomposition
- An extension to incorporate more than 2 independent mediators has also been developed

Illustrative example

- 497 schizophrenia patients from the CATIE trial assigned to either Olanzapine ($n=336$) or a first generation drug used as comparison (Perphenazine, $\mathrm{n}=161$).
- Continuous outcome (total score of PANSS negative symptoms, ranged on a scale from 7 to 49 . Used as a proxy for SF) assessed after 9 months.
- Two continuous continuous mediators, weight gain (in lbs) and PANSS positive score (from 7 to 49), assessed after 6 months from the beginning of the study.

Illustrative example

- Analyses further adjusted for gender, age, race/ethnicity, systolic and diastolic blood pressure, prior treatment, hospitalization, and waist-hip ratio, measured at baseline.
- Parametric approach (Vanderweele and Vansteelandt, 2013), with linear regression models for both outcome and mediators. 4-way decomposition implemented in R .
- Total effect indicated no treatment effect on the negative PANSS score at 9 months ($\beta=0.01,95 \% \mathrm{Cl}:-1.23,1.23$)
- However, treatment was associated with improved PANSS positive symptoms, and with higher weight gain

Decomposition result

	Estimate	95\% Cl
CDE	-2.83	-6.65, 0.92
PNIE ${ }_{\text {PANSS+ }}$	0.18	-0.04, 0.53
PNIE $_{\text {WG }}$	0.79	0.10, 1.42
PNIE PANSS,$+ W G^{\text {W }}$	-	-
INTref ${ }_{\text {PANNS }}+$	2.78	-0.88, 6.28
INTref ${ }_{\text {w }}$	-0.22	-0.75, 0.12
INTref PANSS,$+ W G^{\text {, }}$	-	-
INTmed PANSS+	0.14	-0.07, 0.47
INTmed ${ }_{W G}$	-0.83	-1.62, -0.02
INTmed PANSS,+ WG	-	-
NDE	-0.27	-1.60, 1.05
NIE	0.28	-0.40, 0.91
TE	0.01	-1.23, 1.23

Decomposition result

	Estimate	95\% Cl
CDE	-2.83	-6.65, 0.92
PNIE $_{\text {PANSS+ }}$	0.18	-0.04, 0.53
PNIE $_{W G}$	0.79	0.10, 1.42
PNIE PANSS,$+ W$, $^{\text {a }}$	-	-
INTref $_{\text {PANNS }}^{+}$	2.78	-0.88, 6.28
INTref ${ }_{\text {WG }}$	-0.22	-0.75, 0.12
INTref $_{\text {PANSS }+,}$ WG	-	-
INTmed PANSS+	0.14	-0.07, 0.47
INTmed ${ }_{W G}$	-0.83	-1.62, -0.02
INTmed PANSS,+ WG $^{\text {a }}$	-	-
NDE	-0.27	-1.60, 1.05
NIE	0.28	-0.40, 0.91
TE	0.01	-1.23, 1.23

Decomposition result

	Estimate	95\% CI
CDE	-2.83	-6.65, 0.92
PNIE $_{\text {PANSS+ }}$	0.18	-0.04, 0.53
PNIE $_{\text {WG }}$	0.79	0.10, 1.42
PNIE PANSS,$+ W G^{\text {W }}$	-	-
INTref PANNS $^{+}$	2.78	-0.88, 6.28
INTref ${ }_{\text {W }}$	-0.22	-0.75, 0.12
INTref PANSS,$+ W G^{\text {a }}$	-	-
INTmed PANSS+	0.14	-0.07, 0.47
INTmed ${ }_{\text {w }}$	-0.83	-1.62, -0.02
INTmed PANSS + , WG	-	-
NDE	-0.27	-1.60, 1.05
NIE	0.28	-0.40, 0.91
TE	0.01	-1.23, 1.23

- Treatment effect has opposite sign in direct paths and indirect paths through the two mediators (PANSS+ and WG)
- CDE informs that had the patient experienced no weight gain and no positive symptoms, the treatment would lead to improvement in negative symptoms
- Increase in positive symptoms hampers improvement in negative symptoms (INTref PANSS $_{+}$, PNIE $_{\text {PANSS }}^{+}$, INTmed PANSS+ have all same sign)
- Weight gain displays a complex relationship with negative symptoms (different signs between mediated effect and interactions)

Discussion

- We derived a single decomposition of the total effect that unifies mediation and interaction in the context of multiple mediators
- With independent (non-sequential) mediators, the decomposition can easily be extended to a high number of mediators
- Components can be identified with the same classical assumptions of the classical mediation literature

Discussion (2)

- We are currently investigating the (possibly more likely) setting of sequential mediators. Components definition is challenging and identifiability is not possible for most of them (including interaction terms)

Discussion (2)

- We are currently investigating the (possibly more likely) setting of sequential mediators. Components definition is challenging and identifiability is not possible for most of them (including interaction terms)
- As the number of mediators increase, estimation becomes complicated. Parametric models may not be the best option

References

- Daniel RM, et al. Causal mediation analysis with multiple mediators. Biometrics. 2015 Mar 1;71(1):1-4.
- Lieberman JA, et al. Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) Investigators Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med. 2005 Sep 22;353(12):1209-23.
- VanderWeele TJ. A unification of mediation and interaction: a four-way decomposition. Epidemiology. 2014 Sep;25(5):749.
- VanderWeele TJ., \& Vansteelandt, S. (2013). Mediation analysis with multiple mediators. Epidemiologic methods, 2(1), 95-115.
- Zheng L, et al. Metabolic changes associated with second-generation antipsychotic use in Alzheimers disease patients: the CATIE-AD study. American Journal of Psychiatry. 2009 May;166(5):583-90.

